导师介绍

当前位置: 首页 - 导师介绍 - IMU导师 - 正文

李颖
系别: 
生物医学工程系
办公室: 
江湾校区二号交叉学科楼B5009室
职称: 
青年副研究员
Email: 
yl@fudan.edu.cn

教育和工作背景

2020年6月至今:复旦大学生物医学工程系,青年副研究员

2018年1月至2020年5月:复旦大学电子科学与技术博士后流动站,博士后

2014年9月至2018年1月:复旦大学电子工程系,生物医学工程,博士

2012年9月至2014年7月:复旦大学微电子系,集成电路工程,硕士

2008年9月至2012年7月:陕西师范大学物理学与信息技术学院,电子信息科学与技术,学士

研究方向

智慧医疗超声:医学信号处理、医学超声成像及图像处理、人工智能信息处理、光声检测及成像、超声调控治疗技术。

医学诊疗系统:医学超声诊疗系统、智慧医疗及医疗物联网系统、智能健康监测系统、电子系统软硬件协同设计、FPGA数字逻辑设计、可穿戴医疗嵌入式系统、基于FPGA的高速信号采集与处理系统设计。

科研项目

国家自然科学基金面上项目

上海市生物医药科技支撑专项项目

复旦大学医工结合项目-技术负责人

国家重大科研仪器研制项目-子课题负责人

原创科研个性化支持项目

复旦大学人才引进项目

中国声学学会人才托举计划项目

中国科协优秀中外青年交流合作计划项目

国家自然科学基金青年基金项目

上海市人才发展资金项目

中国博士后科学基金特别资助项目

中国博士后科学基金面上资助项目

荣誉及奖励

● 2023年协助指导研究生获得第十八届中国研究生电子设计竞赛全国总决赛三等奖

● 2023年协助指导本科生获得第八届全国大学生生物医学工程创新设计竞赛一等奖

● 2023年指导研究生获得第八届全国大学生生物医学工程创新设计竞赛二等奖

● 2023年协助指导研究生获得第十八届中国研究生电子设计竞赛上海分赛区一等奖

● 2023年指导研究生获得第十八届中国研究生电子设计竞赛上海分赛区三等奖

● 2022年指导研究生获得首届中国智能医疗器械创新大赛研究生组决赛二等奖

● 2022年协助指导本科生获得首届中国智能医疗器械创新大赛本科生组决赛二等奖

● 2020年指导研究生获得第三届中国医疗器械创新创业大赛人体精密测量专场赛决赛三等奖

● 2020年指导研究生获得第三届中国医疗器械创新创业大赛人体精密测量专场赛复赛一等奖

● 2020年度复旦大学优秀博士后

● 2019年第二届复旦大学博士后创业大赛二等奖

● 2019年中国国际工业博览会优秀展品特等奖

● 2019年日内瓦国际发明展金奖

● 2019年指导研究生获得第十四届中国研究生电子设计竞赛全国总决赛最佳论文奖

● 2019年指导研究生获得第十四届中国研究生电子设计竞赛全国总决赛三等奖

● 2019年第十四届中国研究生电子设计竞赛上海分赛区优秀指导教师奖

● 2019年指导研究生获得第十四届中国研究生电子设计竞赛上海分赛区一等奖

● 2019年复旦大学钟扬式科研团队荣誉称号

● 2019年复旦大学十佳三好研究生导学团队

● 2018年中国国际高新技术成果交易会优秀产品奖

● 2017年教育部科学技术进步奖二等奖

● 2016年全国大学生生物医学工程创新设计大赛一等奖

授课情况

研究生课程 《医学超声学》 ——2023年度校思政标杆课

本科生课程 《信息科学技术的创新创业与发展》

学术任职

中国生物医学工程学会医学超声工程分会委员

上海市中西医结合学会虚证与老年医学专业委员会委员

代表论文

[1]Zhou Xinyan, Sun Shuxin, Chen Yuefu, Liu Chengcheng, Li Dan, Cheng Qun, He Min, Li Ying, Xu Kailiang, Ta Dean. Pulsed frequency modulated ultrasound promotes therapeutic effects of osteoporosis induced by ovarian failure in mice [J]. Ultrasonics, 2023, 132: 106973.

[2]Zhang Chuanxin, Jiang Xue, He Jiajie, Li Ying, Ta Dean. Spatiotemporal Acoustic Communication by a Single Sensor via Rotational Doppler Effect [J]. Advanced Science, 2023, 10(10): 2206619.

[3]Wang Meng, Lin Yi, Gu Feifei, Xing Wenyu, Li Boyi, Jiang Xue, Liu Chengcheng, Li Dan, Li Ying, Wu Yi. Diagnosis of cognitive and motor disorders levels in stroke patients through explainable machine learning based on MRI [J]. Medical Physics, 2023.

[4]Chen Yuefu, Sun Shuxin, Zhou Xinyan, He Min, Li Ying, Liu Chengcheng, Ta Dean. Low-intensity pulsed ultrasound and parathyroid hormone improve muscle atrophy in estrogen deficiency mice [J]. Ultrasonics, 2023, 132: 106984.

[5]Chen Honglei, Ling Feiyao, Zhu Wujun, Sun Di, Liu Xiaoyu, Li Ying, Li Dan, Xu Kailiang, Liu Zenghua, Ta Dean. Waveform inversion for wavenumber extraction and waveguide characterization using ultrasonic Lamb waves [J]. Measurement, 2023, 207: 112360.

[6]Bi Dongsheng, Shi Lingwei, Liu Chengcheng, Li Boyi, Li Ying, Le Lawrence H, Luo Jingchun, Wang Sijia, Ta Dean. Ultrasonic through-transmission measurements of human musculoskeletal and fat properties [J]. Ultrasound in Medicine & Biology, 2023, 49(1): 347-355.

[7]Bi Dongsheng, Shi Lingwei, Li Boyi, Li Ying, Liu Chengcheng, Le Lawrence H, Luo Jingchun, Wang Sijia, Ta Dean. The Protocol of Ultrasonic Backscatter Measurements of Musculoskeletal Properties [J]. Phenomics, 2023: 1-9.

[8]Bi Dongsheng, Liu Chengcheng, Dai Zhongquan, Li Zhili, Li Ying, Li Boyi, Li Dan, Wang Linjie, Qu Lina, Li Yinghui. Human Bone Loss Assessed by High-Resolution Peripheral Quantitative Computed Tomography and Ultrasonic Transmission Techniques [J]. Microgravity Science and Technology, 2023, 35(2): 12.

[9]Zhao Hualiang, Zhang Chuanxin, He Jiajie, Li Ying, Li Boyi, Jiang Xue, Ta Dean. Nondestructive evaluation of special defects based on ultrasound metasurface [J]. Frontiers in Materials, 2022, 8: 802001.

[10]Tran Tho, Li Boyi, Li Ying, Le Lawrence H, Ta Dean. Estimating dispersion relations of ultrasonic guided waves in bone using a modified matrix pencil algorithm [J]. The Journal of the Acoustical Society of America, 2022, 152(4): A239-A239.

[11]Li Ying, Lin Yi, Li Boyi, Liu Chengcheng, Li Dan, Wu Yi, Ta Dean, Wang Weiqi. Experimental study on bone phantom imaging using ultrasound velocity inversion and reverse time migration; proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), F, 2022 [C]. IEEE.

[12]Li Boyi, Zhou Tianhua, Liu Xin, Liu Chengcheng, Tran Tho NHT, Li Ying, Li Dan, Li Yifang, Bi Dongsheng, Ta Dean. A Photoacoustic Spectrum Feature Extraction Method to Characterize the Hydroxyapatite Degradation Process in Cortical Bone; proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), F, 2022 [C]. IEEE.

[13]Li Boyi, Liu Chengcheng, Liu Xin, Tran Tho NHT, Li Ying, Li Dan, Bi Dongsheng, Liu Duwei, Ta Dean. Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation [J]. Chinese Physics B, 2022, 31(11): 114303.

[14]He Jiajie, Zhou Zhiling, Zhang Chuanxin, Zheng Yan, Li Ying, Li Yong, Jiang Xue, Ta Dean. Ultrasparse and omnidirectional acoustic ventilated meta-barrier [J]. Applied Physics Letters, 2022, 120(19).

[15]Chen Honglei, Xu Kailiang, Liu Xiaoyu, Li Ying, Liu Zenghua, Ta Dean. Influence of optical transmissivity on signal characteristics of photoacoustic guided waves in long cortical bone [J]. Ultrasonics, 2022, 126: 106816.

[16]Sun Shuxin, Tang Liang, Zhao Tingting, Kang Yiting, Sun Lijun, Liu Chengcheng, Li Ying, Xu Feng, Qin Yi-Xian, Ta Dean. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats [J]. Ultrasonics, 2021, 113: 106360.

[17]Liu Duwei, Li Boyi, Bi Dongsheng, Tran Tho NHT, Li Yifang, Liu Dan, Li Ying, Ta Dean. Assessment of cortical bone fatigue using coded nonlinear ultrasound [J]. Chinese Physics B, 2021, 30(9): 094301.

[18]Li Yifang, Shi Qinzhen, Li Ying, Song Xiaojun, Liu Chengcheng, Ta Dean, Wang Weiqi. High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion [J]. Chinese Physics B, 2021, 30(1): 014302.

[19]Li Boyi, Liu Chengcheng, Li Ying, Tran Tho NHT, Ta Dean. An Amplitude Modulation Ultrasonic Backscatter Method for Estimation Characterization of Cancellous Bones; proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), F, 2021 [C]. IEEE.

[20]Bi Dongsheng, Dai Zhongquan, Liu Duwei, Wu Feng, Liu Chengcheng, Li Ying, Li Boyi, Li Zhili, Li Yinghui, Ta Dean. Ultrasonic backscatter measurements of human cortical and trabecular bone densities in a head-down bed-rest study [J]. Ultrasound in Medicine & Biology, 2021, 47(8): 2404-2415.

[21]Liu Chengcheng, Li Boyi, Li Ying, Mao Weiying, Chen Chao, Zhang Rong, Ta Dean. Ultrasonic backscatter difference measurement of bone health in preterm and term newborns [J]. Ultrasound in Medicine & Biology, 2020, 46(2): 305-314.

[22]Li Yifang, Xu Kailiang, Li Ying, Xu Feng, Ta Dean, Wang Weiqi. Deep learning analysis of ultrasonic guided waves for cortical bone characterization [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(4): 935-951.

[23]Jiang Chen, Li Ying, Xu Kailiang, Ta Dean. Full-matrix phase shift migration method for transcranial ultrasonic imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(1): 72-83.

[24]Jiang Chen, Li Dan, Xu Feng, Li Ying, Liu Chengcheng, Ta Dean. Numerical evaluation of the influence of skull heterogeneity on transcranial ultrasonic focusing [J]. Frontiers in Neuroscience, 2020, 14: 317.

[25]Liu Chengcheng, Dong Rui, Li Boyi, Li Ying, Xu Feng, Ta Dean, Wang Weiqi. Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model [J]. Chinese Physics B, 2019, 28(2): 024302.

[26]Li Yifang, Xu Kailiang, Li Ying, Hu Bo, Zhang Jianqiu, Le Lawrence H, Ta Dean. Multichannel crossed convolutional neural network for combined estimation of cortical thickness and bulk velocities using ultrasonic guided waves: A simulation study; proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), F, 2019 [C]. IEEE.

[27]Li Yunqing, Xu Kailiang, Jiang Chen, Li Ying, Liu Chengcheng, Zhang Jianqiu, Hu Bo, Ta Dean. Cortical bone fracture imaging using velocity model based multistatic synthetic aperture ultrasound; proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), F, 2019 [C]. IEEE.

[28]Li Ying, Li Boyi, Li Yifang, Liu Chengcheng, Xu Feng, Zhang Rong, Ta Dean, Wang Weiqi. The ability of ultrasonic backscatter parametric imaging to characterize bovine trabecular bone [J]. Ultrasonic imaging, 2019, 41(5): 271-289.

[29]李云清, 江晨, 李颖, 徐峰, 许凯亮, 他得安, 黎仲勋. 基于多层声速模型的合成孔径超声皮质骨成像 [J]. 物理学报, 2019, 68(18): 184302-184302.

[30]第五强强, 李博艺, 李颖, 徐峰, 刘成成, 他得安. 有监督学习的超声背散射方法在骨质评价中的应用 [J]. 声学学报, 2019, (5): 818-825.

[31]Ta Dean, Li Ying, Li Boyi, Zheng Rui, Le Lawrence H. Cancellous bone characterization using ultrasonic backscatter parametric imaging [J]. The Journal of the Acoustical Society of America, 2018, 144(3): 1822-1822.

[32]Liu Chengcheng, Li Ying, Xu Feng, Ta Dean, Hu Bo, Wang Weiqi. Ability of Ultrasonic Apparent Backscatter to Reflect Cancellous Bone Densities; proceedings of the 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) 6, F, 2018 [C]. Springer Singapore.

[33]Liu Chengcheng, Li Boyi, Diwu Qiangqiang, Li Ying, Zhang Rong, Ta Dean, Wang Weiqi. Relationships of ultrasonic backscatter with bone densities and microstructure in bovine cancellous bone [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(12): 2311-2321.

[34]Li Ying, Liu Chengcheng, Xu Feng, Ta Dean. Microstructure characterization of cancellous bone based on ultrasonic C-scan imaging; proceedings of the 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) 6, F, 2018 [C]. Springer Singapore.

[35]Li Ying, Li Boyi, Xu Feng, Liu Chengcheng, Ta Dean, Wang Weiqi. Ultrasonic backscatter measurements at the calcaneus: An in vivo study [J]. Measurement, 2018, 122: 128-134.

[36]Li Ying, Li Boyi, Jiang Chen, Diwu Qiangqiang, Liu Chengcheng, Ta Dean. Trabecular bone characterization using ultrasonic backscatter parametric imaging; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, F, 2018 [C].

[37]Li Boyi, Li Ying, Liu Chengcheng, Xu Feng, Le Lawrence H, Ta Dean. Application of Dynamic Time Warping Technique to Evaluate Microstructures of Cancellous Bones; proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), F, 2018 [C]. IEEE.

[38]Jiang Chen, Li Dan, Li Ying, Xu Feng, Liu Chengcheng, Ta Dean. Enhanced transcranial imaging using longitudinal-shearlongitudinal mode conversion with Barker code excitation; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, F, 2018 [C].

[39]Diwu Qiangqiang, Li Boyi, Li Ying, Xu Feng, Liu Chengcheng, Ta Dean. Low-complexity ultrasonic backscattering measurement in cancellous bone evaluation; proceedings of the Proceedings of Symposium on Ultrasonic Electronics, F, 2018 [C].

[40]Chou Xingxing, Xu Feng, Li Ying, Liu Chengcheng, Ta Dean, Le Lawrence H. Variability in ultrasound backscatter induced by trabecular microstructure deterioration in cancellous bone [J]. BioMed Research International, 2018.

[41] 李博艺, 李颖, 徐峰, 刘成成, 他得安. 空间频率域超声背散射参量用于骨质状况的评价 [J]. 应用声学, 2018, 37(1): 145-151.

[42]Li Ying, Liu Dan, Xu Kailiang, Ta Dean, Le Lawrence H, Wang Weiqi. Transverse and oblique long bone fracture evaluation by low order ultrasonic guided waves: a simulation study [J]. BioMed Research International, 2017.