导师介绍

当前位置: 首页 - 导师介绍 - IMU导师 - 正文

刘欣
系别: 
生物医学工程技术研究所
办公室: 
湾谷科技园D2栋1301
职称: 
教授
Email: 
xin_liu@fudan.edu.cn

教育背景

●2008—2012清华大学 生物医学工程系,生物医学工程专业 博士

●2003—2006第四军医大学 生物医学工程系,生物医学工程专业 硕士

●1996—2001第四军医大学 生物医学工程系,生物医学工程专业 学士

研究方向

● 超高分辨超声成像、光声成像、生物光学分子断层成像、超高分辨光学显微成像等

科研项目

● 主持,国家自然科学基金面上项目“超高分辨超声成像关键技术研究”

● 主持,国家自然科学基金面上项目“基于单视图的X射线发光断层成像系统及方法研究”

● 主持,国家自然科学基金面上项目“面向活细胞结构和功能的三维单分子成像研究”

荣誉及奖励

● 2019年上海市科学技术奖,二等奖,排名8/10

● 2013年陕西省科学技术奖,一等奖,排名2/11

● 2012年清华大学优秀博士毕业生、优秀博士学位论文

学术兼职

● 中国生物医学工程学会生物医学光子学分会青年委员

● 中国光学学会生物医学光子学专委会青年委员

代表论文

1.M.Lu, W. Shi, Z. Jiang, B. Li, D. Ta, and X. Liu*, “Deep learning method for cell count from transmitted-light microscope,” J. Innov. Opt. Heal. Sci., 2350004, 2023.

2.X. Liu, B. Li, C. Liu, and D. Ta*, “Virtual fluorescence translation for biological tissue by conditional generative adversarial network,” Phenomics, 408-420, 2023.

3.W. Gu, B. Li, J. Luo, Z. Yan*, D. Ta, and X. Liu*, “Ultrafast Ultrasound Localization Microscopy by Conditional Generative Adversarial Network”, IEEE Trans. Ultrason. Ferr. Freq. Control, 25-40, 2023.

4.Y. Song, M. Lu, Y. Xie, G. Sun, J. Chen, H. Zhang,X. Liu,* F. Zhang, and L. Sun*, “Deep Learning Fluorescence Imaging of Visible to NIR-II Based on Modulated Multimode Emissions Lanthanide Nanocrystals,” Advanced Functional Materials, 2206802, 2022.

5.B. Li, M. Lu, C. Liu,X. Liu*, and D. Ta, “Acoustic hologram reconstruction with unsupervised neural network,” Frontiers in Materials 9, 916527, 2022.

6.H.Shahid, A. Khalid, Y. Yue,X. Liu*, D. Ta*,” A Feasibility Study of Generative Adversarial Network for Artifacts Removal in Experimental Photoacoustic Imaging,” Ultrasound in Medicine & Biology, 48(8):1628-1643, 2022.

7.Y. Yue, N. Li, H. Shahid, D. Bi,X. Liu*, S. Song*, and D. Ta, “Gross tumor volume definition and comparative assessment for esophageal squamous cell carcinoma from 3D 18F-FDG PET/CT by deep learning-based method,” Frontiers in Oncology 17, 799207, 2022.

8.X. Liu*,#, B. Li#, B. Pang, C. Liu, Y. Shu, K. Xu, J. Luo, and D. Ta*, “Improved Ultrasound Imaging Performance with Complex Cumulant Analysis,” IEEE Trans. Biomed. Engineering 69, 1281-1289, 2022.

9.Z. Jiang, B. Li, Tho. Tran, J. Jiang,X. Liu*, and D. Ta*, “Fluo-Fluo translation based on deep learning,” Chi. Opt. Letters 20, 031701, 2022.

10.X. Liu*, T. Zhou, M. Lu, Y. Yang, Q. He, and J. Luo*, “Deep learning for ultrasound localization microscopy,” IEEE Trans. Med. Imaging 39: 3064-3078, 2020.

11.Y. Liu, Y. Yang, Y. Shu, T. Zhou, J. Luo, andX. Liu*, “Super-Resolution Ultrasound Imaging by Sparse Bayesian Learning Method,” IEEE ACCESS 7, 47197-47205, 2019.

12.X. Liu*, X. Tang, Y. Shu, L. Zhao, Y. Liu, and T. Zhou, “Single-view cone-beam x-ray luminescence optical tomography based on Group_YALL1 method,” Phys. Med. Biol. 64, 2019.

13.Y. Shu, C. Han, M. Lv, and X. Liu*, “Fast super-resolution ultrasound imaging with compressed sensing reconstruction method and single plane wave transmission,” IEEE ACCESS 6, 39298-39306, 2018.

14.L. Zhao, C. Han, Y. Shu, M. Lv, Y. Liu, T. Zhou, Z. Yan, and X. Liu*, “Improved imaging performance in super-resolution localization microscopy by YALL1 method,” IEEE ACCESS 6, 5438-5446, 2018.

15.Y. Shu, L. Zhao, J. Jiang, Z. Yan, J. Luo*, and X. Liu*, “Research progress of X-ray luminescence optical tomography,”科学通报, 62, 3838-3850, 2017.

16.X. Liu*, H. Wang, and Z. Yan, “Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter,” Bio. Opt. Express 7, 4527-4542, 2016.

17.X. Liu*, Q. Liao, H. Wang, and Z. Yan, “Excitation-resolved cone-beam x-ray luminescence tomography,” J. Biomed. Opt. 20, 070501, 2015.

18.X. Liu*, X. He, Z. Yan, and H. Lu, “4-D reconstruction of fluorescence molecular tomography using re-assembled measurement data,” Bio. Opt. Express 6, 1963-1976, 2015.

19.X. Liu*, X. He and Z. Yan, “Performance evaluation of principal component analysis for dynamic fluorescence tomographic imaging in measurement space,” Opt. Engineering 54, 053108, 2015.

20.X. Liu, Z. Yan and H. Lu*, “Performance evaluation of a priori information on reconstruction of fluorescence molecular tomography,” IEEE ACCESS 3, 64-72, 2015.

21.X. Liu*, Q. Liao, and H. Wang, “Fast X-ray Luminescence Computed Tomography Imaging,” IEEE Trans. Biomed. Eng. 61, 1621-1627, 2014.

22.X. Liu*, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single view data,” Opt. Letters 38, 4530–4533, 2013.

23.X. Liu, B. Zhang, J. Luo, and J. Bai*, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31, 2120–2132, 2012.

24.X. Liu, B. Zhang, J. Luo, and J. Bai*, “Principal component analysis of dynamic fluorescence tomography in measurement space,” Phys. Med. Biol. 57, 2727–2742, 2012.

25.X. Liu, F. Liu, Y. Zhang, and J. Bai*, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging 30, 1591–1604, 2011.

26.X. Liu, X. Guo, F. Liu, Y. Zhang, H. Zhang, G. Hu, and J. Bai*, “Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography,” IEEE Trans. Biomed. Eng. 58, 2139–2143, 2011.

27.X. Liu, F. Liu, and J. Bai*, “A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images,” IEEE Trans. Biomed. Eng. 58, 1602–1611, 2011.

28.X. Guo,X. Liu,X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai*, “A combined fluorescence and micro-computed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57, 2876–2883, 2010. (contribute equally)

29.X. Liu, F. Liu, D. Wang, and J. Bai*, “In vivo whole-body imaging of optical agent dynamics using full angle fluorescence diffuse optical tomography,” Chin. Opt. Lett. 8, 1156–1159, 2010.

30.X. Liu, D. Wang, F. Liu, and J. Bai*, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18, 6300–6314, 2010.